Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.460
Filtrar
1.
Biomed Pharmacother ; 174: 116549, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593701

RESUMEN

This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1ß levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1ß levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.


Asunto(s)
Regulación hacia Abajo , Galactosa , Metilaminas , Microglía , Receptores Purinérgicos P2Y12 , Animales , Ratas , Envejecimiento/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Galactosa/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Metilaminas/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Norepinefrina/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2Y12/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
2.
Methods Mol Biol ; 2754: 33-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512659

RESUMEN

Alzheimer's disease, a progressive neurological disorder, is characterized by the accumulation of neurofibrillary tangles and senile plaques by Tau and amyloid-ß, respectively, in the brain microenvironment. The misfolded protein aggregates interact with several components of neuronal and glial cells such as membrane lipids, receptors, transporters, enzymes, cytoskeletal proteins, etc. Under pathological conditions, Tau interacts with several G-protein-coupled receptors (GPCRs), which undergoes either receptor signaling or desensitization followed by internalization of the protein complex. The purinergic GPCR, P2Y12 which is expressed in microglial cells, plays a key role in its activation and migration. Microglial cells sense and migrate to the site of injury aided by P2Y12 receptor that interacts with ADP released from damaged cells. P2Y12 receptor also interacts with misfolded Tau accumulated at the extracellular space and promotes receptor-mediated internalization. Immunocolocalization and co-immunoprecipitation studies demonstrated the interaction of Tau species with the P2Y12 receptor. Later, in-silico analyses were carried out with the repeat domain of Tau (TauRD), which has been identified as the interacting partner of P2Y12 receptor by in-vitro studies. Molecular docking and molecular dynamics simulation studies show the stability and the type of interaction in TauRD-receptor complex. Tau interaction with P2Y12 receptor plays a significant role in maintaining the active state of microglia which could lead to neuroinflammation and neuronal damage in AD brain. Hence, blocking P2Y12-Tau interaction and P2Y12-mediated Tau internalization in microglial cells could be possible therapeutic strategies in downregulating the severity of neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , Receptores Purinérgicos P2Y12/metabolismo , Antagonistas del Receptor Purinérgico P2Y , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas tau/metabolismo
3.
Methods Mol Biol ; 2754: 457-470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512682

RESUMEN

Microglia are the resident brain macrophage cells that are involved in constant surveillance of brain microenvironment. In Alzheimer's disease, microglia get over activated upon the accumulation of Tau and amyloid-ß species in the extracellular space, ultimately leading to neurodegeneration. Microglia phagocytose the extracellular Tau species by several mechanisms among which P2Y12 receptor-mediated internalization of extracellular Tau is recently studied. Extracellular Tau activates microglia and directly interacts with the P2Y12 receptor. Tau-receptor complex is then internalized followed by perinuclear accumulation and lysosomal degradation. Upon microglial activation by extracellular Tau, P2Y12 receptor is also involved in membrane-associated actin remodeling which has its key role in active migration and phagocytosis.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Microglía/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Antagonistas del Receptor Purinérgico P2Y , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo
4.
Phytomedicine ; 128: 155341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518636

RESUMEN

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Células Espumosas , Músculo Liso Vascular , Receptores Purinérgicos P2Y12 , Animales , Aterosclerosis/tratamiento farmacológico , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Masculino , Ratones , Medicamentos Herbarios Chinos/farmacología , Receptores Purinérgicos P2Y12/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Ratas , Modelos Animales de Enfermedad , Autofagia/efectos de los fármacos , Ratas Sprague-Dawley , Metabolismo de los Lípidos/efectos de los fármacos , Aorta/efectos de los fármacos , Lipoproteínas LDL/metabolismo
5.
Auton Neurosci ; 252: 103158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422662

RESUMEN

The present study investigated the localization of the adenosine 5'-diphosphate (ADP)-selective P2Y12 purinoceptors in the rat carotid body using multilabeling immunofluorescence. Punctate immunoreactive products for P2Y12 were distributed in chemoreceptive type I cells immunoreactive to vesicular nucleotide transporter (VNUT) or dopamine beta-hydroxylase, but not in S100B-immunoreactive glial-like type II cells. P2Y12 immunoreactivity was localized in cell clusters containing VNUT-immunoreactive type I cells surrounded by the perinuclear cytoplasm and cytoplasmic processes of type II cells immunoreactive for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, which hydrolyze extracellular nucleotide tri- and/or di-phosphates. In ATP bioluminescence assays using carotid bodies, the degradation of extracellular ATP was attenuated in the presence of the selective NTPDases inhibitor ARL67156, suggesting ATP-degrading activity by NTPDases in the tissue. These results suggest that ATP released from type I cells is degraded into ADP and adenosine 5'-monophosphate by NTPDases expressed in type II cells, and that ADP modulates type I cells via P2Y12 purinoceptors.


Asunto(s)
Cuerpo Carotídeo , Ratas , Animales , Receptores Purinérgicos P2Y12 , Nucleótidos , Adenosina Trifosfato/metabolismo , Adenosina
7.
Respir Res ; 25(1): 61, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281036

RESUMEN

BACKGROUND: Peripheral blood oxygen monitoring via chemoreceptors in the carotid body (CB) is an integral function of the autonomic cardiorespiratory regulation. The presence of the purinergic P2Y12 receptor (P2Y12R) has been implicated in CB; however, the exact role of the receptor in O2 sensing and signal transduction is unknown. METHODS: The presence of P2Y12R was established by immunoblotting, RT qPCR and immunohistochemistry. Primary glomus cells were used to assess P2Y12R function during hypoxia and hypercapnia, where monoamines were measured by HPLC; calcium signal was recorded utilizing OGB-1 and N-STORM Super-Resolution System. Ingravescent hypoxia model was tested in anaesthetized mice of mixed gender and cardiorespiratory parameters were recorded in control and receptor-deficient or drug-treated experimental animals. RESULTS: Initially, the expression of P2Y12R in adult murine CB was confirmed. Hypoxia induced a P2Y12R-dependent release of monoamine transmitters from isolated CB cells. Receptor activation with the endogenous ligand ADP promoted release of neurotransmitters under normoxic conditions, while blockade disrupted the amplitude and duration of the intracellular calcium concentration. In anaesthetised mice, blockade of P2Y12R expressed in the CB abrogated the initiation of compensatory cardiorespiratory changes in hypoxic environment, while centrally inhibited receptors (i.e. microglial receptors) or receptor-deficiency induced by platelet depletion had limited influence on the physiological adjustment to hypoxia. CONCLUSIONS: Peripheral P2Y12R inhibition interfere with the complex mechanisms of acute oxygen sensing by influencing the calcium signalling and the release of neurotransmitter molecules to evoke compensatory response to hypoxia. Prospectively, the irreversible blockade of glomic receptors by anti-platelet drugs targeting P2Y12Rs, propose a potential, formerly unrecognized side-effect to anti-platelet medications in patients with pulmonary morbidities.


Asunto(s)
Cuerpo Carotídeo , Humanos , Ratones , Animales , Cuerpo Carotídeo/metabolismo , Oxígeno , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Calcio/metabolismo , Hipoxia/metabolismo
8.
Br J Pharmacol ; 181(4): 564-579, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36694432

RESUMEN

BACKGROUND AND PURPOSE: Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH: Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS: Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS: Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Asunto(s)
Plaquetas , NAD , Humanos , Simulación del Acoplamiento Molecular , NAD/metabolismo , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Agregación Plaquetaria , Inflamación/metabolismo , Fibrinógeno/metabolismo , Fibrinógeno/farmacología , Adenosina Difosfato Ribosa/metabolismo , Adenosina Difosfato Ribosa/farmacología , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
9.
Br J Pharmacol ; 181(4): 532-546, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37525937

RESUMEN

Sepsis is a complicated pathological condition in response to severe infection. It is characterized by a strong systemic inflammatory response, where multiple components of the immune system are involved. Currently, there is no treatment for sepsis. Blood platelets are known for their role in haemostasis, but they also participate in inflammation through cell-cell interaction and the secretion of inflammatory mediators. Interestingly, an increase in platelet activation, secretion, and aggregation with other immune cells (such as monocytes, T-lymphocytes and neutrophils) has been detected in septic patients. Therefore, antiplatelet therapy in terms of P2Y12 antagonists has been evaluated as a possible treatment for sepis. It was found that blocking P2Y12 receptors decreased platelet marker expression and limited attachment to immune cells in some studies, but not in others. This review addresses the role of platelets in sepsis and discusses whether antagonizing P2Y12 signalling pathways can alter the disease outcome. Challenges in studying P2Y12 antagonists in sepsis also are discussed. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Asunto(s)
Plaquetas , Sepsis , Humanos , Plaquetas/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Antagonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Inmunidad , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Agregación Plaquetaria
10.
Br J Pharmacol ; 181(4): 515-531, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37771103

RESUMEN

Inflammation is a complex pathophysiological process underlying many clinical conditions. Platelets contribute to the thrombo-inflammatory response. Platelet P2Y12 receptors amplify platelet activation, potentiating platelet aggregation, degranulation and shape change. The contents of platelet alpha granules, in particular, act directly on leucocytes, including mediating platelet-leucocyte aggregation and activation via platelet P-selectin. Much evidence for the role of platelet P2Y12 receptors in inflammation comes from studies using antagonists of these receptors, such as the thienopyridines clopidogrel and prasugrel, and the cyclopentyltriazolopyrimidine ticagrelor, in animal and human experimental models. These suggest that antagonism of P2Y12 receptors decreases markers of inflammation with some evidence that this reduces incidence of adverse clinical sequelae during inflammatory conditions. Interpretation is complicated by pleiotropic effects such as those of the thienopyridines on circulating leucocyte numbers and of ticagrelor on adenosine reuptake. The available evidence suggests that P2Y12 receptors are prominent mediators of inflammation and P2Y12 receptor antagonism as a potentially powerful strategy in a broad range of inflammatory conditions. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Antagonistas del Receptor Purinérgico P2Y , Animales , Humanos , Ticagrelor/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Plaquetas , Inflamación/tratamiento farmacológico , Agregación Plaquetaria , Clorhidrato de Prasugrel/farmacología , Tienopiridinas/farmacología , Receptores Purinérgicos P2Y12
11.
Purinergic Signal ; 20(2): 99-108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37697211

RESUMEN

P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). The widely expressed P2Y receptors play important roles in physiology and pathophysiology. This review summarizes the use of pharmacological tools to characterize the P2Y receptor subtypes involved in these responses. MRS2500 is a potent and selective antagonist acting at the P2Y1 receptor. AR-C118925 is useful for the selective antagonism of the P2Y2 receptor. PSB16133 blocks the P2Y4 receptor, MRS2578 is an antagonist at the P2Y6 receptor and NF157 as well as NF340 block the P2Y11 receptor. ADP-induced platelet aggregation is mediated by P2Y1 and P2Y12 receptors. A number of compounds or their active metabolites reduce ADP-induced platelet aggregation by blocking the P2Y12 receptor. These include the active metabolites of the thienopyridine compounds clopidogrel and prasugrel, the nucleoside analogue ticagrelor and the nucleotide analogue cangrelor. PSB0739 is also a potent antagonist at the P2Y12 receptor useful for both in vitro and in vivo studies. MRS2211 and MRS2603 inhibit P2Y13 mediated responses. PPTN is a very potent antagonist at the P2Y14 receptor.


Asunto(s)
Nucleótidos , Transducción de Señal , Animales , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12 , Antagonistas del Receptor Purinérgico P2Y/farmacología , Mamíferos
12.
Br J Pharmacol ; 181(4): 580-592, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37442808

RESUMEN

Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cß (PLCß) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Asunto(s)
Plaquetas , Agregación Plaquetaria , Humanos , Adenosina Difosfato/metabolismo , Plaquetas/fisiología , Transducción de Señal , Inflamación/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Activación Plaquetaria
13.
Br J Pharmacol ; 181(1): 21-35, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530222

RESUMEN

BACKGROUND AND PURPOSE: Ticagrelor is labelled as a reversible, direct-acting platelet P2Y12 receptor (P2Y12 R) antagonist that is indicated clinically for the prevention of thrombotic events in patients with acute coronary syndrome (ACS). As with many antiplatelet drugs, ticagrelor therapy increases bleeding risk in patients, which may require platelet transfusion in emergency situations. The aim of this study was to further examine the reversibility of ticagrelor at the P2Y12 R. EXPERIMENTAL APPROACH: Studies were performed in human platelets, with P2Y12 R-stimulated GTPase activity and platelet aggregation assessed. Cell-based bioluminescence resonance energy transfer (BRET) assays were undertaken to assess G protein-subunit activation downstream of P2Y12 R activation. KEY RESULTS: Initial studies revealed that a range of P2Y12 R ligands, including ticagrelor, displayed inverse agonist activity at P2Y12 R. Only ticagrelor was resistant to washout and, in human platelet and cell-based assays, washing failed to reverse ticagrelor-dependent inhibition of ADP-stimulated P2Y12 R function. The P2Y12 R agonist 2MeSADP, which was also resistant to washout, was able to effectively compete with ticagrelor. In silico docking revealed that ticagrelor and 2MeSADP penetrated more deeply into the orthosteric binding pocket of the P2Y12 R than other P2Y12 R ligands. CONCLUSION AND IMPLICATIONS: Ticagrelor binding to P2Y12 R is prolonged and more akin to that of an irreversible antagonist, especially versus the endogenous P2Y12 R agonist ADP. This study highlights the potential clinical need for novel ticagrelor reversal strategies in patients with spontaneous major bleeding, and for bleeding associated with urgent invasive procedures.


Asunto(s)
Síndrome Coronario Agudo , Difosfatos , Humanos , Ticagrelor/farmacología , Ticagrelor/metabolismo , Ticagrelor/uso terapéutico , Difosfatos/metabolismo , Difosfatos/farmacología , Difosfatos/uso terapéutico , Adenosina/farmacología , Agonismo Inverso de Drogas , Antagonistas del Receptor Purinérgico P2Y/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Plaquetas , Síndrome Coronario Agudo/tratamiento farmacológico , Síndrome Coronario Agudo/complicaciones , Receptores Purinérgicos P2Y12/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 43(10): 2042-2057, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589138

RESUMEN

BACKGROUND: ADP-induced platelet activation leads to cell surface expression of several proteins, including TF (tissue factor). The role of ADP receptors in platelet TF modulation is still unknown. We aimed to assess the (1) involvement of P2Y1 and P2Y12 receptors in ADP-induced TF exposure; (2) modulation of TFpos-platelets in anti-P2Y12-treated patients with coronary artery disease. Based on the obtained results, we revisited the intracellular localization of TF in platelets. METHODS: The effects of P2Y1 or P2Y12 antagonists on ADP-induced TF expression and activity were analyzed in vitro by flow cytometry and thrombin generation assay in blood from healthy subjects, P2Y12-/-, and patients with gray platelet syndrome. Ex vivo, P2Y12 inhibition of TF expression by clopidogrel/prasugrel/ticagrelor, assessed by VASP (vasodilator-stimulated phosphoprotein) platelet reactivity index, was investigated in coronary artery disease (n=238). Inhibition of open canalicular system externalization and electron microscopy (TEM) were used for TF localization. RESULTS: In blood from healthy subjects, stimulated in vitro by ADP, the percentage of TFpos-platelets (17.3±5.5%) was significantly reduced in a concentration-dependent manner by P2Y12 inhibition only (-81.7±9.5% with 100 nM AR-C69931MX). In coronary artery disease, inhibition of P2Y12 is paralleled by reduction of ADP-induced platelet TF expression (VASP platelet reactivity index: 17.9±11%, 20.9±11.3%, 40.3±13%; TFpos-platelets: 10.5±4.8%, 9.8±5.9%, 13.6±6.3%, in prasugrel/ticagrelor/clopidogrel-treated patients, respectively). Despite this, 15% of clopidogrel good responders had a level of TFpos-platelets similar to the poor-responder group. Indeed, a stronger P2Y12 inhibition (130-fold) is required to inhibit TF than VASP. Thus, a VASP platelet reactivity index <20% (as in prasugrel/ticagrelor-treated patients) identifies patients with TFpos-platelets <20% (92% sensitivity). Finally, colchicine impaired in vitro ADP-induced TF expression but not α-granule release, suggesting that TF is open canalicular system stored as confirmed by TEM and platelet analysis of patients with gray platelet syndrome. CONCLUSIONS: Data show that TF expression is regulated by P2Y12 and not P2Y1; P2Y12 antagonists downregulate the percentage of TFpos-platelets. In clopidogrel good-responder patients, assessment of TFpos-platelets highlights those with residual platelet reactivity. TF is stored in open canalicular system, and its membrane exposure upon activation is prevented by colchicine.


Asunto(s)
Enfermedad de la Arteria Coronaria , Síndrome de Plaquetas Grises , Humanos , Plaquetas/metabolismo , Clopidogrel/farmacología , Enfermedad de la Arteria Coronaria/metabolismo , Síndrome de Plaquetas Grises/metabolismo , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/metabolismo , Pruebas de Función Plaquetaria/métodos , Clorhidrato de Prasugrel/metabolismo , Clorhidrato de Prasugrel/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12 , Tromboplastina/metabolismo , Ticagrelor
16.
Int J Biol Sci ; 19(11): 3576-3594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497007

RESUMEN

Increasing evidence suggests that immunometabolism has started to unveil the role of metabolism in shaping immune function and autoimmune diseases. In this study, our data show that purinergic receptor P2Y12 (P2RY12) is highly expressed in concanavalin A (ConA)-induced immune hepatitis mouse model and serves as a potential metabolic regulator in promoting metabolic reprogramming from oxidative phosphorylation to glycolysis in T cells. P2RY12 deficiency or inhibition of P2RY12 with P2RY12 inhibitors (clopidogrel and ticagrelor) are proved to reduce the expression of inflammatory mediators, cause CD4+ and CD8+ effector T cells hypofunction and protect the ConA-induced immune hepatitis. A combined proteomics and metabolomics analysis revealed that P2RY12 deficiency causes redox imbalance and leads to reduced aerobic glycolysis by downregulating the expression of hexokinase 2 (HK2), a rate-limiting enzyme of the glycolytic pathway, indicating that HK2 might be a promising candidate for the treatment of diseases associated with T cell activation. Further analysis showed that P2RY12 prevents HK2 degradation by activating the PI3K/Akt pathway and inhibiting lysosomal degradation. Our findings highlight the importance of the function of P2RY12 for HK2 stability and metabolism in the regulation of T cell activation and suggest that P2RY12 might be a pivotal regulator of T cell metabolism in ConA-induced immune hepatitis.


Asunto(s)
Hepatitis Autoinmune , Receptores Purinérgicos P2Y12 , Animales , Ratones , Glucólisis , Hexoquinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Linfocitos T/metabolismo
17.
Molecules ; 28(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175288

RESUMEN

The P2Y12 receptor is an important member of the purinergic receptor family, known for its critical role in platelet activation and thrombosis. In our previously published study, the acridinone analogue NSC618159 was identified as a potent antagonist of P2Y12. In this work, we investigate the conformational changes in P2Y12 when bound to NSC618159 using molecular dynamics simulations on the receptor's active and inactive forms (4PXZ and 4NTJ, respectively). It was observed that it took the systems about 7 ns and 12 ns to stabilise when NSC618159 was in complex with the active and inactive forms of P2Y12, respectively. Additionally, the binding pocket of the crystal structure 4PXZ expanded from 172.34 Å3 to an average of 661.55 Å3 when bound to NSC618159, with a maximum pocket volume of 820.49 Å3. This expansion was attributed to the pulled away transmembrane (TM) helices and the adoption of a more open conformation by extracellular loop 2 (EL2). In contrast, 4NTJ's pocket volume was mostly consistent and had an average of 1203.82 Å3. Moreover, the RMSF profile of the NSC618159-4PXZ complex showed that residues of TM-I and TM-VII had similar fluctuations to the 4NTJ crystal structure, representing the inactive form of P2Y12. Finally, the energy components and binding affinities of NSC618159 towards the active and inactive forms of P2Y12 were predicted using the MM-PBSA approach. According to the results, the binding affinity of NSC618159 towards both active (4PXZ) and inactive (4NTJ) forms of P2Y12 was found to be almost identical, with values of -43.52 and -41.68 kcal/mol, respectively. In conclusion, our findings provide new insights into the conformational changes of P2Y12 upon binding to NSC618159 and may have implications for the development of new P2Y12 antagonists with enhanced potency and specificity.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Purinérgicos P2Y12 , Estructura Secundaria de Proteína , Antagonistas del Receptor Purinérgico P2Y
18.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047682

RESUMEN

P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.


Asunto(s)
COVID-19 , Receptores Purinérgicos P2 , Animales , Humanos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , COVID-19/metabolismo , Plaquetas/metabolismo , Transducción de Señal , Sistema Inmunológico , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Adenosina Difosfato/metabolismo
20.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119477, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061007

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease that is associated with protein misfolding, plaque accumulation, neuronal dysfunction, synaptic loss, and cognitive decline. The pathological cascade of AD includes the intracellular Tau hyperphosphorylation and its subsequent aggregation, extracellular Amyloid-ß plaque formation and microglia-mediated neuroinflammation. The extracellular release of aggregated Tau is sensed by surveilling microglia through the involvement of various cell surface receptors. Among all, purinergic P2Y12R signaling is involved in microglial chemotaxis towards the damaged neurons. Microglial migration is highly linked with membrane-associated actin remodeling leading to the phagocytosis of extracellular Tau species. Here, we studied the formation of various actin structures such as podosome, lamellipodia and filopodia, in response to extracellular Tau monomers and aggregates. Microglial podosomes are colocalized with actin nucleator protein WASP, Arp2 and TKS5 adaptor protein during Tau-mediated migration. Moreover, the P2Y12 receptors were associated with F-actin-rich podosome structures, which signify the potential of Tau aggregates in microglial chemotaxis through the involvement of actin remodeling.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Podosomas , Humanos , Microglía/metabolismo , Actinas/metabolismo , Podosomas/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...